
 

On Implicit Elicitation of Cognitive 
Strategies using Gaze Transition 
Entropies in Pattern Recognition Tasks

Abstract 
Recent research provides evidence that individual 
differences on human cognitive strategies affect user 
performance and experience in diverse application 
domains. However, state-of-the-art elicitation methods 
of human cognitive strategies require from researchers 
to apply explicit, in-lab, and time-consuming “paper-
and-pencil” techniques, compromising real-time 
integration of human cognitive strategies in interactive 
system design. Aiming to elaborate an implicit 
elicitation framework of human cognitive strategies, 
this paper reports on an in-lab eye-tracking study, 
which embraced sixty seven participants, who 
performed a credible “paper-and-pencil” cognitive 
strategy elicitation technique. Eye tracking analysis 
based on gaze transition entropies revealed 
quantitative differences on visual search patterns 
among individuals within visual pattern recognition 
tasks of varying complexity. Results of this study could 
drive the development of an implicit elicitation 
framework of human cognitive strategies. 
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Introduction 
People differ in the way they seek, process, represent 
and retrieve information, as they are characterized by 
different cognitive attributes (e.g., skills, strategies) 
[14]. Recent research provides evidence that individual 
differences in human cognitive attributes have main 
effects on task performance and user experience in 
diverse application domains, such as e-learning [24], 
security [3], e-shopping [16], and gaming [20].  

Tsianos et al. [24] showed that students who were 
characterized as visualizers (i.e., individuals who prefer 
pictorial content than textual) used more often media 
resources when interacting with an e-learning system; 
while verbalizers (i.e., individuals who prefer textual 
content than pictorial) used textual resources more 
often. Belk et al. [3] showed that visualizers performed 
better in terms of time and correct answers, when 
using graphical CAPTCHAs than textual ones; while 
verbalizers performed better when using textual 
CAPTCHAs. Mawad et al. [16] showed that consumers 
characterized as field-independent (i.e., individuals who 
can easily distinguish details in complex scenes) were 
engaged in a more thoughtful information processing, 
following a more analytical approach, when selecting 
dairy products, than field-dependent (i.e., individuals 
who have difficulties identifying simple information 
within complex scenes) consumers.  

Hence, it would be beneficial to incorporate effectively 
cognitive strategies as human factor in personalization 
and adaptation frameworks, aiming to deliver real-time 
tailored services and functionalities, based on individual 
cognitive attributes. However, the barrier in such 
endeavors is the explicit elicitation of the cognitive 
strategies, which nowadays is based on traditional in-

lab (e.g., “paper-and-pencil” [1,19]) and time-
consuming (e.g., fifteen minutes [1,19]) techniques, 
compromising real-time integration of human cognitive 
strategies in interactive system design. 

A recent literature review [21] revealed that there is a 
strong correlation between human cognitive attributes 
and visual behavior, within different types of user 
activities. Hence, eye-tracking tools could be used 
inferentially to reason about human cognitive 
strategies, based on quantitatively measured individual 
differences on visual behavior within certain types of 
activities. Therefore, the motivation underlying our 
work is moving toward an implicit elicitation framework 
of cognitive strategies, based on an eye-tracking 
multifactorial model of: human cognitive factor, visual 
behavior factor, and activity factor (as depicted in 
Figure 1). From a methodological perspective, such a 
framework should rely on ground-truth data derived 
from state-of-the-art, credible, and validated tools used 
for cognitive strategies elicitation. 

This paper reports a feasibility study to justify the use 
of the aforementioned multifactorial model to design an 
eye-tracking framework to elicit human cognitive 
strategies implicitly and in real time. Our study was 
based on Group Embedded Figures Test (GEFT) 
[11,19], a traditional “paper-and-pencil” instrument. 
GEFT is used to classify individuals according to Field 
Dependence – Independence (FD-I) cognitive strategy 
[26]; one of the most well established, credible and 
validated [2,4] cognitive strategy frameworks. GEFT is 
a time-administered tool which consists of a set of 
pattern recognition tasks of diverse complexity, in 
which the users are asked to identify simple shapes 
within complex figures.  

Figure 1: Eye tracking multifactorial 
model for implicit elicitation of human 
cognitive factors. It consists of three 
main factors: human cognitive factor 
(e.g., cognitive strategies), activity 
factor (e.g., pattern recognition 
activities) and visual behavior factor 
(e.g., eye movements).  
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Related Work 
To the authors’ knowledge there are no studies which 
follow the framework proposed in Figure 1, which 
incorporates its three main factors to propose an 
implicit elicitation mechanism of cognitive strategies. 
Despite that a number of studies have shown a strong 
correlation among eye movements, cognitive strategies 
and pattern recognition tasks [5,10,17,18], none of 
them has elaborated on an implicit elicitation 
framework of cognitive strategies. Nisiforou and Laghos 
[18] investigated the association between FD-I and eye 
movements within visual search tasks, and they found 
significant differences among field dependents and field 
independents in terms of low-level eye-tracking metrics 
(e.g., number of fixations and saccades). However, the 
visual strategy (e.g., scanpaths) the users followed was 
discussed only qualitatively, and despite the insights we 
gained, such non-quantitative analysis could not be 
used by information systems to elicit human cognitive 
factors implicitly in in-real time scenarios. 

Theoretical Background 
Human Cognitive Factor 
The theoretical background of this work is based on the 
three axes of the multifactorial model (Figure 1). The 
human cognitive factor reflects on theories of individual 
differences in cognitive strategies, suggesting that 
individuals have preferred ways of seeking, 
representing, processing and retrieving information, 
which are related to their individual cognitive skills and 
abilities, e.g. perceptual speed and memory load 
[6,12,26]. Several researchers have focused on high-
level cognitive processes to explain empirically such 
observed differences [14]. Such processes are called 
cognitive strategies and a number of them has been 
developed and studied over the years [1,12,22,26].  

One of the most well established, credible and validated 
[2,4] cognitive strategies is the Field Dependence-
Independence (FD-I) style [26], which classifies people 
as field dependent (FD) or field independent (FI). FDs 
tend to prefer a more holistic way when processing 
information, and have difficulties in identifying visual 
details in complex scenes [26]. On the other hand, FIs 
tend to prefer a more analytical information processing 
approach, pay attention to details, and easily separate 
simple structures from the surrounding context [26]. 

Visual Behavior Factor 
As FD-I is based on visual tasks performance, it is 
related to visual perception (i.e., the ability to identify, 
organize, and interpret the environment by processing 
visual information). Visual perceptual span varies in 
visual search tasks, depending on the difficulty level of 
the task and it is interrelated with eye movements 
[27]. Eye movement data is captured through eye-
tracking tools, helping us understand individuals’ visual 
behavior, and the strategy they follow to solve visual 
problems. The recent technological advances have had 
a major impact on the eye-tracking industry, with the 
development of devices of high accuracy. A number of 
eye-tracking data and measures of diverse complexity 
have been developed, such as number of fixations and 
saccades, fixation duration[7], trending scan-path 
analysis [8], and transition entropies [15]. 

A high-level eye-tracking measure used to quantify the 
visual search strategy is the gaze transition entropy 
proposed by Krejtz et al. [15]. In general, entropy 
measures the lack of order or predictability (i.e., the 
higher the entropy, the more disordered a system is). 
Accordingly, the gaze transitions made through the 
areas of interest (AOIs) of a stimuli, and the stationary 

Very easy 

Moderate 

Difficult 

Easy 

Very difficult 

Figure 2: Samples of the pattern 
recognition tasks [9]. The users were 
asked to identify and outline the 
simple form (left figure) into the 
complex one (right figure). The tasks 
differ in terms of difficulty, starting 
from very easy (top figure) to very 
difficult (bottom figure). 
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distribution of eye-movements over the stimuli, have 
an impact on visual search behavior. They are 
expressed through transition entropy Ht, and stationary 
entropy Hs. Lower values of Ht indicate more careful 
viewing of AOIs, while greater Ht values indicate more 
randomness and more frequent switching between 
AOIs. Lower values of Hs are obtained when fixations 
tend to be concentrated on certain AOIs, while greater 
Hs indicates that visual attention is distributed more 
equally among AOIs. 

Activity Factor 
A recent literature review [21] revealed that activity 
types (e.g., visual exploration, visual search, pattern 
recognition) influence visual behavior. Since FD-I 
measures the ability of individuals to identify simple 
details in complex visual scenes, it reflects on pattern 
recognition activity type. The traditional FD-I elicitation 
tool (i.e., GEFT) consists of twenty-five pattern 
recognition tasks of varying complexity. For each task, 
individuals are asked to identify and outline a simple 
figure within a complex one. The test consists of three 
sections of seven, nine and nine items, with two, five 
and five minutes allocated respectively. The number of 
simple figures correctly identified on the last two 
sections constitutes the raw score, which is used to 
classify the subject as FD or FI (i.e., the higher the 
score, the more field-independent the subject is). 

Tasks differ in terms of difficulty and complexity; 
factors that affect the performance of individuals with 
different cognitive attributes [23,27]. The FD-I pattern 
recognition tasks span across five difficulty states: very 
easy, easy, medium, difficult and very difficult [9,25]. 
The classification of each task was based on the time 
needed by a sample of individuals to correctly solve the 

task and the total number of errors made, according to 
the original work of Gottschaldt [9] and Witkin [25]. A 
sample set of tasks is depicted in Figure 2. 

User study  
Participants 
Sixty-seven subjects (29 females, 38 males), ranging in 
age from 20 to 47 (31.1 ± 6.4), participated in the 
experiment. Each participant undertook GEFT, and their 
score ranged from 1 to 18 (11.4 ± 3.7) (Figure 4). 

Apparatus  
Participants' eye movements were recorded with Tobii 
Pro Glasses 2 wearable system. Following common 
practice, we focused on where and when fixations 
occurred. Fixations were extracted using a customized 
velocity threshold identification (I-VT) algorithm [13], 
based on the I-VT algorithm provided by Tobii. 

Hypotheses 
The following null hypotheses were formed: H01: there 
is no significant difference between FDs and FIs in 
terms of gaze transition entropy Ht throughout visual 
pattern recognition tasks of specific difficulty. H02: 
there is no significant difference between FDs and FIs in 
terms of gaze stationary entropy Hs throughout visual 
pattern recognition tasks of specific difficulty.  

Procedure 
At first, we recruited the study participants, who had to 
meet a set of minimum requirements (i.e., have never 
taken GEFT before, be older than 18 years old, and 
have no vision problems). Then, each participant was 
allocated with a wearable eye-tracking device and was 
asked to undertake the original GEFT tasks. Afterwards, 
the analysis of the results followed. 

Figure 3: The scan-paths are 
transformed in transition matrixes, 
displaying the probability to perform 
a gaze transition across three vertical 
AOIs. The matrixes are then 
transformed in transition Ht and 
stationary Hs entropies. Lower Ht and 
Hs are displayed on the right figure. 

Figure 4: Participants’ GEFT scores 
were normally distributed (Shapiro-
Wilk: p=0.145). The light-red areas 
indicate the extreme FDs (left side) 
and the extreme FIs (right side). 
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Analysis of Results and Interpretation 
The analysis of the eye movement data focuses on the 
comparison of participants’ visual search strategy (in 
terms of transition and stationary entropies) in relation 
to their cognitive group and the difficulty level of each 
pattern recognition task. For the scope of the study, we 
focused on the visual search behavior of the extreme 
types of FDs and FIs, as personalization has significant 
impact on such users. According to the participants’ 
GEFT scores, we had 9 FDs (i.e., individuals who scored 
lower than 7) and 13 FIs (i.e., individuals who scored 
higher than 15). Moreover, each complex form of the 
pattern recognition task was divided into three vertical 
AOIs (Figure 3), as it was originally performed in Krejtz 
et al. [15] study. For each entropy type, we performed 
a within-subjects 2x5 ANOVA, with cognitive strategy 
(FD and FI) and task difficulty (very easy; easy; 
medium; difficult and very difficult) as the independent 
variables, and Ht and Hs as the dependent variables. 

Gaze transitions among AOIs 
The 2x5 ANOVA test met all assumptions (i.e., there 
were no outliers; Ht was distributed normally; Ht 
variance was homogenous). The results indicated that 
there was a statistically significant interaction effect 
between cognitive strategy and visual search task 
difficulty for transition entropy Ht (F=6.212, p<0.005, 
partial η2=0.430). On very easy, easy and moderate 
tasks FIs had similar Ht values with FDs. However, as 
the complexity of the background figures increased, the 
Ht values differed significantly, with FIs having lower 
levels of Ht than FDs in both cases (F=8.270, p=0.007, 
η2=0.200 for difficult tasks, and F=38.685, p=0.001, 
η2=0.540 for very difficult tasks). The higher Ht values 
of FDs indicate more randomness regarding their eye 
movements and a more exploratory character of their 

visual attention, rather than a systematic approach 
(Figure 5). 

Visual attention distribution on AOIs 
The 2x5 ANOVA test met all assumptions (i.e., there 
were no outliers; Hs was distributed normally; Hs 
variance was homogenous). The results indicated that 
there was a statistically significant interaction effect 
between cognitive strategy and visual search task 
difficulty for stationary entropy Hs (F=3.406, p=0.019, 
partial η2=0.292). On very easy, easy and moderate 
tasks FIs had similar Hs values with FDs. However, as 
the complexity of the background figures increased, the 
Hs values differed significantly, with FIs having lower 
levels of Hs than FDs in both cases (F=7.878, p=0.038, 
η2=0.193 for difficult tasks, and F=18.752, p=0.001, 
η2=0.362 for very difficult tasks). A higher value of 
stationary entropy means that the subject distributes 
their visual attention more equally among AOIs. A 
lower value is obtained when fixations tend to be 
concentrated on certain AOIs (Figure 6).  

Both findings indicate that individuals who have 
different cognitive strategies, have also quantitatively 
different visual search approaches (in terms of 
transition and stationary entropies), when performing 
pattern recognition tasks of varying complexity. Their 
differences in visual search strategy are strongly 
correlated with the complexity factor of each task, 
which is highly correlated with participants’ completion 
time and score of GEFT. That is, the significant 
differences in transition and stationary entropies, when 
performing difficult and very difficult pattern 
recognition tasks, are in-line with FDs’ and FIs’ 
differences in task performance, in terms of completion 
time and correct answers (Figures 7 and 8). 
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Figure 5: FI individuals produced 
more gaze transitions among AOIs 
(expressed in transition entropy Ht) 
than FDs. Their difference increases 
as the task complexity increases. 
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Figure 6: FD individuals distributed 
their attention more equally among 
AOIs (expressed in stationary entropy 
Hs) than FIs; the difference increases 
as the task complexity increases. 
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Implications for further research 
Based on the derived results, an implicit elicitation 
framework, based on eye-tracking, is proposed (Figure 
9). It reflects on the multifactorial model (Figure 1) 
components (i.e., human cognition, visual behavior and 
activity factors). It consists of three layers: knowledge, 
data acquisition, and implicit elicitation. Each layer has 
discrete functionalities and is expandable.  

 

Figure 9: Implicit elicitation framework of human cognitive 
attributes, based on eye-tracking. 

The knowledge layer contains data which reflect the 
interplay among human cognition, visual behavior, and 
activity factors. Knowledge data should be continuously 
enriched and refined from credible and validated 
research studies. 

The data acquisition layer continuously collects data 
derived from eye-tracking device and correlates the 
gathered data with the knowledge of the framework for 

specific activity, visual behavior and desired human 
cognitive factors to be implicitly elicited.  

The implicit elicitation layer reasons about the human 
cognitive factors by classifying individuals based on a 
decision making approach. It would rely on probabilistic 
methods, based on threshold analysis and cut-off score 
techniques, to model user behaviors and provide the 
classification decision to third-party service providers. 

An example of future use of the proposed framework is 
in action games, which entail information processing 
tasks. Gamers would wear mixed reality glasses to 
visually scan gaming context and search for assets to 
complete game objectives. The integrated eye-tracking 
tool would be used to elicit gamers’ cognitive strategies 
implicitly and in-real time, providing them with 
personalized experiences, and adapting the gaming 
environment to their preferences automatically by 
adjusting the game difficulty level accordingly.  

Conclusion 
This paper revealed that individual differences in 
cognitive strategies are quantitatively reflected on gaze 
transitions in specific visual pattern recognition tasks of 
varying complexity. Bearing in mind that the presented 
results relied on a ground-truth and credible method for 
human cognitive strategies elicitation, such research 
endeavors could drive an elaboration of an implicit 
elicitation framework of human cognitive strategies, 
based on eye-tracking data. We also presented initial 
ideas of such a framework. Real-time and implicit 
elicitation of human cognitive strategies would open 
unprecedented opportunities for improving user 
experience through adaptation and personalization, on 
a plethora of application and research domains. 

Figure 8: FDs make more mistakes 
on identifying simple figures within 
complex ones, on pattern recognition 
tasks, than FIs. Their difference 
increases as the task complexity 
increases. 
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Figure 7: FDs need more time to 
identify simple figures within complex 
ones, on pattern recognition tasks, 
than FIs. Their difference, in terms of 
completion time, increases as the 
task complexity increases. 
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Figure 8: FDs made more mistakes 
on pattern recognition tasks, than 
FIs. Their difference, in terms of false 
identified figures, increases as the 
task complexity increases. 
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